Creating an Automated Data Engineering Pipeline for Batch Data in Machine Learning

A common use case in Machine Learning life cycle is to have access to the latest training data so as to prevent model deterioration. A lot of times data scientists find it cumbersome to manually export data from data sources such as relational databases or NoSQL data stores or even distributed data. This necessitates automating the data engineering pipeline in Machine Learning. In this post, we will describe how to set up this pipeline for batch data. This workflow is orchestrated via Airflow and can be set up to run at regular intervals: such as hourly, daily, weekly, etc depending on the specific business requirements.

Quick note – In case you are interested in building a real time data engineering pipeline for ML, please look at this post.

In this use case, we are going to export MongoDB data into Google BigQuery via Cloud Storage. The updated data in BigQuery is then made available in Jupyter Notebook as a Pandas Dataframe for downstream model building and analytics. As the pipeline automates the data ingestion and preprocessing, the data scientists always have access to the latest batch data in their Jupyter Notebooks hosted on Google AI Platform. 

We have a MongoDB service running in an instance and we have Airflow and mongoexport running on docker on another instance. Mongoexport is a utility that produces a JSON or CSV export of data stored in MongoDB. Now the data in MongoDB shall be extracted and transformed using mongoexport and loaded into CloudStorage. Airflow is used to schedule and orchestrate these exports. Once the data is available in CloudStorage it could be queried in BigQuery. We then get this data from BigQuery to Jupyter Notebook. Following is a step by step sequence of steps to set up this data pipeline.

You can create an instance in GCP by going to Compute Engine. Click on create instance.

sudo apt-get update
curl -fsSL -o
sudo usermod -aG docker $USER
sudo apt-get install -y python-pip
export AIRFLOW_HOME=~/airflow
sudo pip install apache-airflow
sudo pip install apache-airflow[postgres,s3]
airflow initdb
airflow webserver -p 8080 -D
airflow scheduler -D
sudo docker pull mongo
sudo docker run --name mongo_client -d mongo

Please run the file using ./ command (please make sure file is executable), which would install Docker, Airflow, pulls Mongo image and runs the mongo image in a container named mongo_client.

After installation, for Airflow webUIhttp://<public-ip-instance>:8080 (You may need to open port 8080 in the network just for your public IP)

Please make sure the Google service account in the running instance must have permissions for accessing Big Query and Cloud Storage. After installation, add the Airflow job Python file ( inside the airflow/dags folder.

Before running the Python file, please make sure that you create Dataset and create the table in BigQuery. Also change the appropriate values for the MongoDB source database, MongoDB source table, Cloud Storage destination bucket and BigQuery destination dataset in the Airflow job Python file ( Big Query destination table name is the same as the source table in Mongo DB.

import airflow
from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from airflow.operators.python_operator import PythonOperator
from datetime import datetime, timedelta
import json
from import json_normalize

# Following are default arguments which could be overridden
default_args = {
    'owner': 'airflow',
    'depends_on_past': False,
    'start_date': airflow.utils.dates.days_ago(0),
    'email': [''],
    'email_on_failure': False,
    'email_on_retry': False,
    'retries': 1,
    'retry_delay': timedelta(minutes=1),

bucket_name = '<Your_Bucket>'
db_name = '<Database_Name>'
dataset = '<Dataset_Name>'
table_name = '<Table_Name>'

time_stamp =
cur_date = time_stamp.strftime("%Y-%m-%d")

# It will flatten the nested json
def flatten_json(y):
    out = {}
    def flatten(x, name=''):
        if type(x) is dict:
            for a in x:
                flatten(x[a], name + a + '_')
        elif type(x) is list:
            i = 0
            for a in x:
                flatten(a, name + str(i) + '_')
                i += 1
            out[name[:-1]] = x

    return out

def convert_string(y):
    string_type = {}

    def convert(x, name=''):
        if type(x) is dict:
            for a in x:
                convert(str(x[a]), name + a + '_')
        elif type(x) is list:
            i = 0
            for a in x:
                flatten(a, name + str(i) + '_')
                i += 1
            string_type[name[:-1]] = x

    return string_type

def json_flat():
    lines = [line.rstrip('\n') for line in open('/home/dev/'+ table_name + '-unformat.json')]
    flat_list = []
    for line in lines:
        line = line.replace("\"$", "\"")
        line = json.loads(line)
        except Exception as e:
    flatted_json = '\n'.join(i for i in flat_list)

    with open('/home/dev/' + table_name + '.json', 'a') as file:
    return flatted_json 

dag = DAG('mongoexport-daily-gcs-bq', default_args=default_args, params = {'cur_date': cur_date, 'db_name': db_name, 'table_name': table_name, 'dataset': dataset, 'bucket_name': bucket_name})
#exports provide a table data into docker container 
t1 = BashOperator(
    bash_command='sudo docker exec -i mongo_client sh -c "mongoexport --host=<instance_public_ip> --db {{params.db_name}} --collection {{params.table_name}} --out {{params.table_name}}-unformat.json"',

# copies exported file into instance

t2 = BashOperator(
    bash_command='sudo docker cp mongo_client:/{{params.table_name}}-unformat.json /home/dev/',

t3 = PythonOperator(
# copies the flatten data from cloud storage
t4 = BashOperator(
    bash_command='gsutil cp /home/dev/{{params.table_name}}.json gs://{{params.bucket_name}}/raw/{{params.table_name}}/date={{params.cur_date}}/',
t5 = BashOperator(
    bash_command='gsutil cp /home/dev/{{params.table_name}}.json gs://{{params.bucket_name}}/curated/{{params.table_name}}/',

# removes the existing bigquery table
t6 = BashOperator(
    bash_command='bq rm -f {{params.dataset}}.{{params.table_name}}',
# creates a table in bigquery
t7 = BashOperator(
    bash_command='bq load --autodetect --source_format=NEWLINE_DELIMITED_JSON {{params.dataset}}.{{params.table_name}} gs://{{params.bucket_name}}/curated/{{params.table_name}}/{{params.table_name}}.json',
# removes data from container
t8 = BashOperator(
    bash_command='sudo docker exec -i mongo_client sh -c "rm -rf {{params.table_name}}*.json"',
# removes data from instance
t9 = BashOperator(
    bash_command='rm -rf /home/dev/{{params.table_name}}*.json',

t1 >> t2
t2 >> t3
t3 >> [t4, t5]
[t4, t5] >> t6
t6 >> t7
t7 >> [t8, t9]

Then run the python file using python <file-path>.py  

(example: python airflow/dags/

After running the python file, the dag name shows in Airflow webUI. And you could trigger the dag manually. Please make sure toggle button is in ON status

Once the job completes, the data is stored in the bucket and also available in the destination table in BigQuery. You could see the table is created in BigQuery. Click on querytable to perform SQL operations and you could see your results in the preview tab at the bottom.

Now, you could access the data in Jupyter Notebook from BigQuery. Search for notebook in GCP console. 

Run the below commands in Jupyter Notebook.

from import bigquery
client = bigquery.Client()
sql = """
df = client.query(sql).to_dataframe()

This loads the BigQuery data into Pandas dataframe and can be used for model creation as required. Later when the data pipeline is run as per schedule, the refreshed data would automatically be available in this Jupyter notebook via this SQL query.

Hope this helps you to automate your batch Data Engineering pipeline for Machine Learning. 

This story is co-authored by Santosh and Subbareddy. Santosh is an AWS Cloud Engineer and Subbareddy is a Big Data Engineer.

Real Time Data Engineering Pipeline for Machine Learning

Our focus in this post is to leverage Google Cloud Platform’s Big Data Services to build an end to end Data Engineering pipeline for streaming processes.

So what is Data Engineering?
Data Engineering is associated with data specifically around data delivery, storage and processing. The main goal is to provide a reliable infrastructure for data which includes operations such as collect, move, store and prepare data.

Most companies store their data in different formats across databases and as text files. This is where data engineers come in to picture, they build pipelines that transform this data into formats that data scientists could use.

Need for Data Engineering in Machine Learning:
Data engineers are responsible for:

  • Develop machine learning models.
  • Improve existing machine learning models.
  • Research and implement best practices to enhance existing machine learning infrastructure.
  • Developing, constructing, testing and maintaining architectures, such as databases and large-scale processing systems.
  • Analyzing large and complex data sets to derive valuable insights.

This is the reference architecture used to build the end to end pipe data pipeline :

Google Cloud Platform Data Engineering Pipeline for Streaming Processes

The Google Cloud Services used in above streaming process are:

  1. Cloud Firestore: Lets us store data in cloud so that we could sync it across all other devices and also share among multiple users. It is a NoSQL query document data which lets us store, query and sync.
  2. Cloud Function: A lightweight compute solution for developers to create single-purpose, stand-alone functions that respond to cloud events without the need to manage a server or runtime environment.
  3. Cloud Pub/Sub: A fully-managed real-time messaging service that allows you to send and receive messages across independent applications.
  4. Cloud Dataflow: A cloud-based data processing service for both batch and real-time data streaming applications. It enables developers to set up data processing pipelines for integrating, preparing and analyzing large data sets.
  5. Cloud Storage: A data storage service in which data is maintained, managed, backed up remotely and made available to users over a network.
  6. BigQuery: It was designed for analyzing data on the order of billions of rows, using a SQL-like syntax. It runs on the Google Cloud Storage infrastructure and could be accessed with a REST-oriented application programming interface (API).
  7. Jupyter notebook: An open source web application that you could use to create and share documents that contain live code, equations, visualizations, and text.

Create data engineering pipeline via Firestore Streaming

Step1: Add a new record in a collection (think of it as a table), say pubsub-event in firestore.

Step2: It triggers the cloud function named pubsub_event

Document Path: pubsub-event/{eventId}  listens for changes to all pubsub-event documents.

Below is the Cloud Function written in node js which triggers whenever there is a change in our source Firestore collection and publishes the data to Pub/Sub

const PubSub = require('@google-cloud/pubsub');
const pubsubClient = new PubSub();
const functions = require('firebase-functions');

exports.helloFirestore = functions.firestore
  .onCreate((snap, context) => {
    const event =;
    const payload_data = {};
    for (let key of Object.keys(event)) {
    	payload_data[key] = event[key];
    // The name for the new topic
    const topicName = 'pubsub-gcs';
    const dataBuffer = Buffer.from(JSON.stringify(payload_data));
    // Creates the new topic
    return pubsubClient
      .then(messageId => {
        console.log(`Message ${messageId} published.`);
        return messageId;
      .catch(err => {
        console.error('ERROR:', err);


Below is the dependencies of the Cloud Function.

  "name": "functions",
  "description": "Cloud Functions for Firebase",
  "scripts": {
    "serve": "firebase serve --only functions",
    "shell": "firebase functions:shell",
    "start": "npm run shell",
    "deploy": "firebase deploy --only functions",
    "logs": "firebase functions:log"
  "engines": {
    "node": "8"
  "dependencies": {
    "@google-cloud/pubsub": "^0.18.0",
    "firebase-admin": "~7.0.0",
    "firebase-functions": "^2.3.1"
  "devDependencies": {
    "firebase-functions-test": "^0.1.6"
  "private": true

Step3: Cloud Function pubsub_event publishes data to Pub/Sub topic projects/ProjectName/topics/pubsub-gcs

Step4: As shown above, create an export job : ps-to-text-pubsub-gcs (implemented via Dataflow). This job reads data every 5 minutes (configurable to other values as well) from Pub/Sub topic pubsub-gcs and dumps this into the destination bucket on GCS.

Click on run the job.

 Step6: Now, we have data in CloudStorage. We shall use BigQuery to perform all the data manipulation operations. But first we need to create dataset in BigQuery to query data from GCS into Bigquery.

Go to BigQuery and create dataset. So that we create our table to access that data.

The dataset shall be created. By clicking on the dataset you shall see an option to CREATE TABLE.

Click on CREATE TABLE then we shall get the data from CloudStorage. While setting up the required inputs as indicated below, please make sure that you select “Table type” as External Table. This ensures that BigQuery is able to automatically load new data as it comes into GCS.

To create table in BigQuery from CloudStorage. Click on the browse button and configure file path.

Files that are having pubsub-event-* as prefix. This prefix is very important as it makes sure that all subsequent data dumps into GCS destination folder are also picked automatically by BigQuery. Select the file format to be JSON. Check the auto-detect schema box. Then click create table.

Quick Tip: For reading nested json files in BigQuery, please go through this resource. Now the data which is present in CloudStorage is also available in BigQuery and you could run sql commands to manipulate the data.

Click on table you have created, accounts is my table name and click on query table to make SQL operations and you could see your results in the preview tab at the bottom.

Step7: Now, we are on to the last step to access this BigQuery data in Jupyter Notebooks and use that as the source data to train and build our ML models.

Search for notebook in GCP console. 

You shall see something like this 

Click on OPEN JUPYTERLAB then it will redirect you to notebook.

from import bigquery

client = bigquery.Client()

sql = """

df = client.query(sql).to_dataframe()

So in this way, we have built a data pipeline that continuously dumps data from Firestore into GCS every 5 minutes, which is then readily available in Jupyter Notebook via BigQuery for any downstream analytics and ML model building.

Look forward to your comments.

This story is co-authored by Santosh Kumar and PV Subbareddy. Santosh is a Software Engineer specializing on Cloud Services and DevOps. Subbareddy is a Big Data Engineer specializing on AWS Big Data Services and Apache Spark Ecosystem.