Optimizing QuickSight using Athena Queries and SPICE: Operating cost analysis

In this post, I will be discussing as an example how an automobile manufacturing company could utilize QuickSight to analyze their sales data and make better decisions. We will also learn how to best optimize the QuickSight operational cost structure by using SPICE engine to ingest source data at certain recurring intervals from Athena queries. This has two major advantages : dashboards and analyses load quickly as the data source is within SPICE. Secondly, cost of data ingestion is also brought down as Athena is queried only to refresh the data load in SPICE.

We will look at a sales dashboard, created using data-sets prepared from data in refined zone in a DataLake created using LakeFormation. A Data engineering pipeline writes data to this refined zone with year and month partitions every hour.

In case you wish to build a similar thing and follow along, below is the link to raw datasets:

https://github.com/koushik-bitzop/data-sets/tree/master/sales2016-2018

Creating a SPICE based Athena Data-set:

Select Athena as the data set source:

Select use custom query.

Select Edit/Preview data and then choose data source as SPICE and click on Finish.

Once query successfully ran and you could see the data, click on the Save and Visualise.

In case you want to add any calculated fields or change data types you could do that in the red highlighted section shown above.

I have discussed in detail here in my previous articles Visualizing Multiple Datasets in AWS QuickSight and Adding User-Interactivity to AWS QuickSight Dashboards

Refresh Schedule for Data-sets:

Depending on how frequent new data is arrived you could schedule the refresh. For every refresh an Athena query is executed and the results are imported into SPICE.

Note: 

  1. In this example, Quicksight SPICE pull data refresh is whole data, not incremental.
  2. It is not possible to pass quicksight pass pushdown predicates (variables) from filters in dashboard to Athena. So if you want to look at a rolling window of data such as past 24 hours or past one month or past 6 months, we can use a WHERE clause in the Athena source query to fetch just those records. Also, if the data is partitioned by year and month, only required data is scanned thereby further saving on costs.

A lowdown on QuickSight Operating cost with this architecture:

We are looking at two main cost components:

  1. Athena – S3 data scan costs
  2. QuickSight Infrastructure costs

Athena – S3 data scan costs:

Athena pricing for successful queries:
1TB scan = 5$
S3 storage cost not included.

No. of queriesData scanned in S3Scheduled RefreshTotal Data scanned
(monthly)
Bill estimated
(monthly)
Bill estimated
(annual)
1150 to 210 KBHourly1*24*30*210KB = 0.0001512TB0.000756$0.009072$

Above numbers are a bit low to make an inference. Let us say, you have 4 such queries (each query is scanning around 150 to 200 MB) powering the dashboard and SPICE ingests this data once every hour.

No. of queriesData scanned in S3Scheduled RefreshTotal Data scanned
(monthly)
Bill estimated
(monthly)
Bill estimated
(annual)
4150 to 200 MBHourly4*24*30*300MB = 576GB or 0.57TB$2.88$34.56

In case, we do not use SPICE to load this data from Athena in an hourly fashion and instead use Athena query as the direct source, then cost of the dashboards would increase proportionately with each query. So as an example, if the dashboards are being viewed at a rate of 1000 views per hour (and each dashboard has 4 source queries), then the cost above would be multiplied by a staggering 1000 times! and the annual bill would be an eye popping $ 34,560.

QuickSight infrastructure cost (Standard Edition):

No charge for readers. $9 for Author with annual subscription.

User typeNo. of usersBill estimated
(monthly)
Bill estimated
(annual)
Author1$9$108
Reader3$0$0
Total
$9 pm$108 pa

Note: For Enterprise edition, Readers are billed $0.30 for a 30-minute session up to a maximum charge of $5/reader/month for unlimited use. Authors are billed $18 with annual subscription.
For SPICE additional capacity $0.25/GB/standard and $0.38/GB/enterprise. 

So overall we can see that using SPICE with a periodic data refresh causes the costs to be optimized in a smart way. That’s it folks. I hope it was helpful. For any queries, drop them in the comments section.

This story is authored by Koushik. Koushik is a software engineer and a keen data science and machine learning enthusiast.

AWS Machine Learning Data Engineering Pipeline for Batch Data

This post walks you through all the steps required to build a data engineering pipeline for batch data using AWS Step Functions. The sequence of steps works like so : the ingested data arrives as a CSV file in a S3 based data lake in the landing zone, which automatically triggers a Lambda function to invoke the Step Function. I have assumed that data is being ingested daily in a .csv file with a filename_date.csv naming convention like so customers_20190821.csv. The step function, as the first step, starts a landing to raw zone file transfer operation via a Lambda Function. Then we have an AWS Glue crawler crawl the raw data into an Athena table, which is used as a source for AWS Glue based PySpark transformation script. The transformed data is written in the refined zone in the parquet format. Again an AWS Glue crawler runs to “reflect” this refined data into another Athena table. Finally, the data science team can consume this refined data available in the Athena table, using an AWS Sagemaker based Jupyter notebook instance. It is to be noted that the data science does not need to do any data pull manually, as the data engineering pipeline automatically pulls in the delta data, as per the data refresh schedule that writes new data in the landing zone.

Let’s go through the steps

How to make daily data available to Amazon SageMaker?

What is Amazon SageMaker?

Amazon SageMaker is an end-to-end machine learning (ML) platform that can be leveraged to build, train, and deploy machine learning models in AWS. Using the Amazon SageMaker Notebook module, improves the efficiency of interacting with the data without the latency of bringing it locally.
For deep dive into Amazon SageMaker, please go through the official docs.

In this blog post, I will be using a dummy customers data. The customers data consists of retailer information and units purchased.

Updating Table Definitions with AWS Glue

The data catalog feature of AWS Glue and the inbuilt integration to Amazon S3 simplifies the process of identifying data and deriving the schema definition out of the source data. Glue crawlers within Data catalog, are used to build out the metadata tables of data stored in Amazon S3.

I created a crawler named raw for the data in raw zone (s3://bucketname/data/raw/customers/). In case you are just starting out on AWS Glue crawler, I have explained how to create one from scratch in one of my earlier article. If you run this crawler, it creates customers table in specified database (raw).

Create an invocation Lambda Function

In case you are just starting out on Lambda functions, I have explained how to create one from scratch with an IAM role to access the StepFunctions, Amazon S3, Lambda and CloudWatch in my earlier article.

Add trigger to the created Lambda function named invoke-step-functions. Configure Bucket, Prefix and  Suffix accordingly.

Once file is arrived at landing zone, it triggers the invoke Lambda function which extracts year, month, day from file name that comes from event. It passes year, month, day with two characters from uuid as input to the AWS StepFunctions.Please replace the following code in invoke-step-function Lambda.

import json
import uuid
import boto3
from datetime import datetime

sfn_client = boto3.client('stepfunctions')

stm_arn = 'arn:aws:states:us-west-2:XXXXXXXXXXXX:stateMachine:Datapipeline-for-SageMaker'

def lambda_handler(event, context):
    
    # Extract bucket name and file path from event
    bucket_name = event['Records'][0]['s3']['bucket']['name']
    path = event['Records'][0]['s3']['object']['key']
    
    file_name_date = path.split('/')[2]
    processing_date_str = file_name_date.split('_')[1].replace('.csv', '')
    processing_date = datetime.strptime(processing_date_str, '%Y%m%d')
    
    # Extract year, month, day from date
    year = processing_date.strftime('%Y')
    month = processing_date.strftime('%m')
    day = processing_date.strftime('%d')
    
    uuid_temp = uuid.uuid4().hex[:2]
    execution_name = '{processing_date_str}-{uuid_temp}'.format(processing_date_str=processing_date_str, uuid_temp=uuid_temp)
    
    # Starts the execution of AWS StepFunctions
    response = sfn_client.start_execution(
          stateMachineArn = stm_arn,
          name= str(execution_name),
          input= json.dumps({"year": year, "month": month, "day": day})
      )
    
    return {"year": year, "month": month, "day": day}

Create a Generic FileTransfer Lambda

Create a Lambda function named generic-file-transfer as we created earlier in this article. In the file transfer Lambda function, it transfers files from landing zone to raw zone and landing zone to archive zone based on event coming from the StepFunction.

  1. If step is landing-to-raw-file-transfer, the Lambda function copies files from landing to raw zone.
  2. If step is landing-to-archive-file-transfer, the Lambda function copies files from landing to archive zone and deletes files from landing zone.

Please replace the following code in generic-file-transfer Lambda.

import json
import boto3

s3 = boto3.resource('s3')

def lambda_handler(event, context):
    
    # Extract Parameters from Event (invoked by StepFunctions)
    step = event['step']
    year = event['year']
    month = event['month']
    day = event['day']
    
    bucket_name = event['bucket_name']
    source_prefix = event['source_prefix']
    destination_prefix = event['destination_prefix']
    
    bucket = s3.Bucket(bucket_name)
    
    for objects in bucket.objects.filter(Prefix = source_prefix):
        file_path = objects.key
        
        if ('.csv' in file_path) and (step == 'landing-to-raw-file-transfer'):
            
            # Extract filename from file_path
            file_name_date = file_path.split('/')[2]
            file_name = file_name_date.split('_')[0]
            
            # Add filename to the destination prefix
            destination_prefix = '{destination_prefix}{file_name}/year={year}/month={month}/day={day}/'.format(destination_prefix=destination_prefix, file_name=file_name, year=year, month=month, day=day)
            print(destination_prefix)
            
            source_object = {'Bucket': bucket_name, "Key": file_path}
            
            # Replace source prefix with destination prefix
            new_path = file_path.replace(source_prefix, destination_prefix)
            
            # Copies file
            new_object = bucket.Object(new_path)
            new_object.copy(source_object)
         
        if ('.csv' in file_path) and (step == 'landing-to-archive-file-transfer'):
            
            # Add filename to the destination prefix
            destination_prefix = '{destination_prefix}{year}-{month}-{day}/'.format(destination_prefix=destination_prefix, year=year, month=month, day=day)
            print(destination_prefix)
            
            source_object = {'Bucket': bucket_name, "Key": file_path}
            
            # Replace source prefix with destination prefix
            new_path = file_path.replace(source_prefix, destination_prefix)
            
            # Copies file
            new_object = bucket.Object(new_path)
            new_object.copy(source_object)
            
            # Deletes copied file
            bucket.objects.filter(Prefix = file_path).delete()
            
    return {"year": year, "month": month, "day": day}

Generic FileTransfer Lambda function setup is now complete. We need to check all files are copied successfully from one zone to another zone. If you have large files that needs to be copied, you could check out our Lightening fast distributed file transfer architecture.

Create Generic FileTransfer Status Check Lambda Function

Create a Lambda function named generic-file-transfer-status. If the step is landing to raw file transfer, the Lambda function checks if all files are copied from landing to raw zone by comparing the number of objects in landing and raw zones. If count doesn’t match it will raise an exception, and that exception is handled in AWS StepFunctions and retries after some backoff rate. If the count matches, all files are copied successfully. If the step is landing to archive file transfer, the Lambda function checks that any files are left in landing zone. Please replace the following code in generic-file-transfer-status Lambda function.

import json
import boto3

s3 = boto3.resource('s3')

def lambda_handler(event, context):
    
    # Extract Parameters from Event (invoked by StepFunctions)
    step = event['step']
    year = event['year']
    month = event['month']
    day = event['day']
    
    bucket_name = event['bucket_name']
    source_prefix = event['source_prefix']
    destination_prefix = event['destination_prefix']
    
    bucket = s3.Bucket(bucket_name)
    
    class LandingToRawFileTransferIncompleteException(Exception):
        pass

    class LandingToArchiveFileTransferIncompleteException(Exception):
        pass
    
    if (step == 'landing-to-raw-file-transfer'):
        if file_transfer_status(bucket, source_prefix, destination_prefix):
            print('File Transfer from Landing to Raw Completed Successfully')
        else:
            raise LandingToRawFileTransferIncompleteException('File Transfer from Landing to Raw not completed')
    
    if (step == 'landing-to-archive-file-transfer'):
        if is_empty(bucket, source_prefix):
            print('File Transfer from Landing to Archive Completed Successfully')
        else:
            raise LandingToArchiveFileTransferIncompleteException('File Transfer from Landing to Archive not completed.')
    
    return {"year": year, "month": month, "day": day}

def file_transfer_status(bucket, source_prefix, destination_prefix):
    
    try:
        
        # Checks number of objects at the source prefix (count of objects at source i.e., landing zone)
        source_object_count = 0
        for obj in bucket.objects.filter(Prefix = source_prefix):
            path = obj.key
            if (".csv" in path):
                source_object_count = source_object_count + 1
        print(source_object_count)
        
        # Checks number of objects at the destination prefix (count of objects at destination i.e., raw zone)
        destination_object_count = 0
        for obj in bucket.objects.filter(Prefix = destination_prefix):
            path = obj.key
            
            if (".csv" in path):
                destination_object_count = destination_object_count + 1
        
        print(destination_object_count)
        return (source_object_count == destination_object_count)

    except Exception as e:
        print(e)
        raise e

def is_empty(bucket, prefix):
    
    try:
        # Checks if any files left in the prefix (i.e., files in landing zone)
        object_count = 0
        for obj in bucket.objects.filter(Prefix = prefix):
            path = obj.key

            if ('.csv' in path):
                object_count = object_count + 1
                    
        print(object_count)
        return (object_count == 0)
        
    except Exception as e:
        print(e)
        raise e

Create a Generic Crawler invocation Lamda

Create a Lambda function named generic-crawler-invoke. The Lambda function invokes a crawler. The crawler name is passed as argument from AWS StepFunctions through event object. Please replace the following code in generic-crawler-invoke Lambda function.

import json
import boto3

glue_client = boto3.client('glue')

def lambda_handler(event, context):
    
    # Extract Parameters from Event (invoked by StepFunctions)
    year = event['year']
    month = event['month']
    day = event['day']
    
    crawler_name = event['crawler_name']
    
    try:
        response = glue_client.start_crawler(Name = crawler_name)
    except Exception as e:
        print('Crawler in progress', e)
        raise e
    
    return {"year": year, "month": month, "day": day}

Create a Generic Crawler Status Lambda

Create a Lambda function named generic-crawler-status. The Lambda function checks whether the crawler ran successfully or not. If crawler is in running state, the Lambda function raises an exception and the exception will be handled in the Step Function and retries after a certain backoff rate. Please replace the following code in generic-crawler-status Lambda.

import json
import boto3

glue_client = boto3.client('glue')

def lambda_handler(event, context):
    
    class CrawlerInProgressException(Exception):
        pass
    
    # Extract Parametres from Event (invoked by StepFunctions)
    year = event['year']
    month = event['month']
    day = event['day']
    
    crawler_name = event['crawler_name']
    
    response = glue_client.get_crawler_metrics(CrawlerNameList =[crawler_name])
    print(response['CrawlerMetricsList'][0]['CrawlerName']) 
    print(response['CrawlerMetricsList'][0]['TimeLeftSeconds']) 
    print(response['CrawlerMetricsList'][0]['StillEstimating']) 
    
    if (response['CrawlerMetricsList'][0]['StillEstimating']):
        raise CrawlerInProgressException('Crawler In Progress!')
    elif (response['CrawlerMetricsList'][0]['TimeLeftSeconds'] > 0):
        raise CrawlerInProgressException('Crawler In Progress!')
    
    return {"year": year, "month": month, "day": day}

Create an AWS Glue Job

AWS Glue is a fully managed ETL (extract, transform, and load) service that makes it simple and cost-effective to categorize your data, clean it, enrich it, and move it reliably between various data stores. For deep dive into AWS Glue, please go through the official docs.

Create an AWS Glue Job named raw-refined. In case you are just starting out on AWS Glue Jobs, I have explained how to create one from scratch in my earlier article. This Glue job converts file format from csv to parquet and stores in refined zone. The push down predicate is used as filter condition for reading data of only the processing date using the partitions.

import sys
from awsglue.transforms import *
from awsglue.utils import getResolvedOptions
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.job import Job

## @params: [JOB_NAME]
# args = getResolvedOptions(sys.argv, ['JOB_NAME'])

args = getResolvedOptions(sys.argv, ['JOB_NAME', 'year', 'month', 'day'])

year = args['year']
month = args['month']
day = args['day']

sc = SparkContext()
glueContext = GlueContext(sc)
spark = glueContext.spark_session
job = Job(glueContext)
job.init(args['JOB_NAME'], args)

datasource0 = glueContext.create_dynamic_frame.from_catalog(database = "raw", table_name = "customers", push_down_predicate ="((year == " + year + ") and (month == " + month + ") and (day == " + day + "))", transformation_ctx = "datasource0")

applymapping1 = ApplyMapping.apply(frame = datasource0, mappings = [("email_id", "string", "email_id", "string"), ("retailer_name", "string", "retailer_name", "string"), ("units_purchased", "long", "units_purchased", "long"), ("purchase_date", "string", "purchase_date", "string"), ("sale_id", "string", "sale_id", "string"), ("year", "string", "year", "string"), ("month", "string", "month", "string"), ("day", "string", "day", "string")], transformation_ctx = "applymapping1")

resolvechoice2 = ResolveChoice.apply(frame = applymapping1, choice = "make_struct", transformation_ctx = "resolvechoice2")

dropnullfields3 = DropNullFields.apply(frame = resolvechoice2, transformation_ctx = "dropnullfields3")

datasink4 = glueContext.write_dynamic_frame.from_options(frame = dropnullfields3, connection_type = "s3", connection_options = {"path": "s3://bucketname/data/refined/customers/", "partitionKeys": ["year","month","day"]}, format = "parquet", transformation_ctx = "datasink4")

job.commit()

Create a Refined Crawler as we created Raw Crawler earlier in this article. Please point the crawler path to refined zone(s3://bucketname/data/refined/customers/) and database as refined. No need to create a Lambda function for refined crawler invocation and status, as we will pass crawler names from the StepFunction.

Resources required to create an the StepFunction have been created.

Creating the AWS StepFunction

StepFunction is where we create and orchestrate steps to process data according to our workflow. Create an AWS StepFunctions named Datapipeline-for-SageMaker.  In case you are just starting out on AWS StepFunctions, I have explained how to create one from scratch here.

Data is being ingested into landing zone. It triggers a Lambda function which in turn invokes the execution of the StepFunction. The steps in the StepFunction are as follows:

  1. Transfers files from landing zone to raw zone.
  2. Checks all files are copied to raw zone successfully or not.
  3. Invokes raw Crawler which crawls data in raw zone and updates/creates definition of table in the specified database.
  4. Checks if the Crawler is completed successfully or not.
  5. Invokes Glue Job and waits for it to complete.
  6. Invokes refined Crawler which crawls data from refined zone in and updates/creates definition of table in the specified database.
  7. Checks if the Crawler is completed successfully or not.
  8. Transfers files from landing zone to archive zone and deletes files from landing zone.
  9. Checks all files are copied and deleted from landing zone successfully.

Please update the StepFunctions definition with the following code.

{
  "Comment": "Datapipeline For MachineLearning in AWS Sagemaker",
  "StartAt": "LandingToRawFileTransfer",
  "States": {
    "LandingToRawFileTransfer": {
      "Comment": "Transfers files from landing zone to Raw zone.",
      "Type": "Task",
      "Parameters": {
        "step": "landing-to-raw-file-transfer",
        "bucket_name": "bucketname",
        "source_prefix": "data/landing/",
        "destination_prefix": "data/raw/",
        "year.$": "$.year",
        "month.$": "$.month",
        "day.$": "$.day"
      },
      "Resource": "arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:generic-file-transfer",
      "TimeoutSeconds": 4500,
      "Catch": [
        {
          "ErrorEquals": [
            "States.TaskFailed"
          ],
          "Next": "LandingToRawFileTransferFailed"
        },
        {
          "ErrorEquals": [
            "States.ALL"
          ],
          "Next": "LandingToRawFileTransferFailed"
        }
      ],
      "Next": "LandingToRawFileTransferPassed"
    },
    "LandingToRawFileTransferFailed": {
      "Type": "Fail",
      "Cause": "Landing To Raw File Transfer failed"
    },
    "LandingToRawFileTransferPassed": {
      "Type": "Pass",
      "ResultPath": "$",
      "Parameters": {
        "year.$": "$.year",
        "month.$": "$.month",
        "day.$": "$.day"
      },
      "Next": "LandingToRawFileTransferStatus"
    },
    "LandingToRawFileTransferStatus": {
      "Comment": "Checks whether all files are copied from landing to raw zone successfully.",
      "Type": "Task",
      "Parameters": {
        "step": "landing-to-raw-file-transfer",
        "bucket_name": "bucketname",
        "source_prefix": "data/landing/",
        "destination_prefix": "data/raw/",
        "year.$": "$.year",
        "month.$": "$.month",
        "day.$": "$.day"
      },
      "Resource": "arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:generic-file-transfer-status",
      "Retry": [
        {
          "ErrorEquals": [
            "LandingToRawFileTransferInCompleteException"
          ],
          "IntervalSeconds": 30,
          "BackoffRate": 2,
          "MaxAttempts": 5
        },
        {
          "ErrorEquals": [
            "States.All"
          ],
          "IntervalSeconds": 30,
          "BackoffRate": 2,
          "MaxAttempts": 5
        }
      ],
      "Catch": [
        {
          "ErrorEquals": [
            "States.TaskFailed"
          ],
          "Next": "LandingToRawFileTransferStatusFailed"
        },
        {
          "ErrorEquals": [
            "States.ALL"
          ],
          "Next": "LandingToRawFileTransferStatusFailed"
        }
      ],
      "Next": "LandingToRawFileTransferStatusPassed"
    },
    "LandingToRawFileTransferStatusFailed": {
      "Type": "Fail",
      "Cause": "Landing To Raw File Transfer failed"
    },
    "LandingToRawFileTransferStatusPassed": {
      "Type": "Pass",
      "ResultPath": "$",
      "Parameters": {
        "year.$": "$.year",
        "month.$": "$.month",
        "day.$": "$.day"
      },
      "Next": "StartRawCrawler"
    },
    "StartRawCrawler": {
      "Comment": "Crawls data from raw zone and adds table definition to the specified Database. IF table definition exists updates the definition.",
      "Type": "Task",
      "Parameters": {
        "crawler_name": "raw",
        "year.$": "$.year",
        "month.$": "$.month",
        "day.$": "$.day"
      },
      "Resource": "arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:generic-crawler-invoke",
      "TimeoutSeconds": 4500,
      "Catch": [
        {
          "ErrorEquals": [
            "States.TaskFailed"
          ],
          "Next": "StartRawCrawlerFailed"
        },
        {
          "ErrorEquals": [
            "States.ALL"
          ],
          "Next": "StartRawCrawlerFailed"
        }
      ],
      "Next": "StartRawCrawlerPassed"
    },
    "StartRawCrawlerFailed": {
      "Type": "Fail",
      "Cause": "Crawler invocation failed"
    },
    "StartRawCrawlerPassed": {
      "Type": "Pass",
      "ResultPath": "$",
      "Parameters": {
        "year.$": "$.year",
        "month.$": "$.month",
        "day.$": "$.day"
      },
      "Next": "RawCrawlerStatus"
    },
    "RawCrawlerStatus": {
      "Comment": "Checks whether crawler is successfully completed.",
      "Type": "Task",
      "Parameters": {
        "crawler_name": "raw",
        "year.$": "$.year",
        "month.$": "$.month",
        "day.$": "$.day"
      },
      "Resource": "arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:generic-crawler-status",
      "Retry": [
        {
          "ErrorEquals": [
            "CrawlerInProgressException"
          ],
          "IntervalSeconds": 30,
          "BackoffRate": 2,
          "MaxAttempts": 5
        },
        {
          "ErrorEquals": [
            "States.All"
          ],
          "IntervalSeconds": 30,
          "BackoffRate": 2,
          "MaxAttempts": 5
        }
      ],
      "Catch": [
        {
          "ErrorEquals": [
            "States.TaskFailed"
          ],
          "Next": "RawCrawlerStatusFailed"
        },
        {
          "ErrorEquals": [
            "States.ALL"
          ],
          "Next": "RawCrawlerStatusFailed"
        }
      ],
      "Next": "RawCrawlerStatusPassed"
    },
    "RawCrawlerStatusFailed": {
      "Type": "Fail",
      "Cause": "Crawler invocation failed"
    },
    "RawCrawlerStatusPassed": {
      "Type": "Pass",
      "ResultPath": "$",
      "Parameters": {
        "year.$": "$.year",
        "month.$": "$.month",
        "day.$": "$.day"
      },
      "Next": "GlueJob"
    },
    "GlueJob": {
      "Comment": "Invokes Glue job and waits for Glue job to complete.",
      "Type": "Task",
      "Resource": "arn:aws:states:::glue:startJobRun.sync",
      "Parameters": {
        "JobName": "retail-raw-refined",
        "Arguments": {
          "--refined_prefix": "data/refined",
          "--year.$": "$.year",
          "--month.$": "$.month",
          "--day.$": "$.day"
        }
      },
      "Catch": [
        {
          "ErrorEquals": [
            "States.TaskFailed"
          ],
          "Next": "GlueJobFailed"
        },
        {
          "ErrorEquals": [
            "States.ALL"
          ],
          "Next": "GlueJobFailed"
        }
      ],
      "Next": "GlueJobPassed"
    },
    "GlueJobFailed": {
      "Type": "Fail",
      "Cause": "Crawler invocation failed"
    },
    "GlueJobPassed": {
      "Type": "Pass",
      "ResultPath": "$",
      "Parameters": {
        "year.$": "$.Arguments.--year",
        "month.$": "$.Arguments.--month",
        "day.$": "$.Arguments.--day"
      },
      "Next": "StartRefinedCrawler"
    },
    "StartRefinedCrawler": {
      "Comment": "Crawls data from refined zone and adds table definition to the specified Database.",
      "Type": "Task",
      "Parameters": {
        "crawler_name": "refined",
        "year.$": "$.year",
        "month.$": "$.month",
        "day.$": "$.day"
      },
      "Resource": "arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:generic-crawler-invoke",
      "TimeoutSeconds": 4500,
      "Catch": [
        {
          "ErrorEquals": [
            "States.TaskFailed"
          ],
          "Next": "StartRefinedCrawlerFailed"
        },
        {
          "ErrorEquals": [
            "States.ALL"
          ],
          "Next": "StartRefinedCrawlerFailed"
        }
      ],
      "Next": "StartRefinedCrawlerPassed"
    },
    "StartRefinedCrawlerFailed": {
      "Type": "Fail",
      "Cause": "Crawler invocation failed"
    },
    "StartRefinedCrawlerPassed": {
      "Type": "Pass",
      "ResultPath": "$",
      "Parameters": {
        "year.$": "$.year",
        "month.$": "$.month",
        "day.$": "$.day"
      },
      "Next": "RefinedCrawlerStatus"
    },
    "RefinedCrawlerStatus": {
      "Comment": "Checks whether crawler is successfully completed.",
      "Type": "Task",
      "Parameters": {
        "crawler_name": "refined",
        "year.$": "$.year",
        "month.$": "$.month",
        "day.$": "$.day"
      },
      "Resource": "arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:generic-crawler-status",
      "Retry": [
        {
          "ErrorEquals": [
            "CrawlerInProgressException"
          ],
          "IntervalSeconds": 30,
          "BackoffRate": 2,
          "MaxAttempts": 5
        },
        {
          "ErrorEquals": [
            "States.All"
          ],
          "IntervalSeconds": 30,
          "BackoffRate": 2,
          "MaxAttempts": 5
        }
      ],
      "Catch": [
        {
          "ErrorEquals": [
            "States.TaskFailed"
          ],
          "Next": "RefinedCrawlerStatusFailed"
        },
        {
          "ErrorEquals": [
            "States.ALL"
          ],
          "Next": "RefinedCrawlerStatusFailed"
        }
      ],
      "Next": "RefinedCrawlerStatusPassed"
    },
    "RefinedCrawlerStatusFailed": {
      "Type": "Fail",
      "Cause": "Crawler invocation failed"
    },
    "RefinedCrawlerStatusPassed": {
      "Type": "Pass",
      "ResultPath": "$",
      "Parameters": {
        "year.$": "$.year",
        "month.$": "$.month",
        "day.$": "$.day"
      },
      "Next": "LandingToArchiveFileTransfer"
    },
    "LandingToArchiveFileTransfer": {
      "Comment": "Transfers files from landing zone to archived zone",
      "Type": "Task",
      "Parameters": {
        "step": "landing-to-archive-file-transfer",
        "bucket_name": "bucketname",
        "source_prefix": "data/landing/",
        "destination_prefix": "data/raw/",
        "year.$": "$.year",
        "month.$": "$.month",
        "day.$": "$.day"
      },
      "Resource": "arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:generic-file-transfer",
      "TimeoutSeconds": 4500,
      "Catch": [
        {
          "ErrorEquals": [
            "States.TaskFailed"
          ],
          "Next": "LandingToArchiveFileTransferFailed"
        },
        {
          "ErrorEquals": [
            "States.ALL"
          ],
          "Next": "LandingToArchiveFileTransferFailed"
        }
      ],
      "Next": "LandingToArchiveFileTransferPassed"
    },
    "LandingToArchiveFileTransferFailed": {
      "Type": "Fail",
      "Cause": "Crawler invocation failed"
    },
    "LandingToArchiveFileTransferPassed": {
      "Type": "Pass",
      "ResultPath": "$",
      "Parameters": {
        "year.$": "$.year",
        "month.$": "$.month",
        "day.$": "$.day"
      },
      "Next": "LandingToArchiveFileTransferStatus"
    },
    "LandingToArchiveFileTransferStatus": {
      "Comment": "Checks whether all files are copied from landing to archived successfully.",
      "Type": "Task",
      "Parameters": {
        "step": "landing-to-archive-file-transfer",
        "bucket_name": "bucketname",
        "source_prefix": "data/landing/",
        "destination_prefix": "data/raw/",
        "year.$": "$.year",
        "month.$": "$.month",
        "day.$": "$.day"
      },
      "Resource": "arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:generic-file-transfer-status",
      "Retry": [
        {
          "ErrorEquals": [
            "LandingToArchiveFileTransferInCompleteException"
          ],
          "IntervalSeconds": 30,
          "BackoffRate": 2,
          "MaxAttempts": 5
        },
        {
          "ErrorEquals": [
            "States.All"
          ],
          "IntervalSeconds": 30,
          "BackoffRate": 2,
          "MaxAttempts": 5
        }
      ],
      "Catch": [
        {
          "ErrorEquals": [
            "States.TaskFailed"
          ],
          "Next": "LandingToArchiveFileTransferStatusFailed"
        },
        {
          "ErrorEquals": [
            "States.ALL"
          ],
          "Next": "LandingToArchiveFileTransferStatusFailed"
        }
      ],
      "Next": "LandingToArchiveFileTransferStatusPassed"
    },
    "LandingToArchiveFileTransferStatusFailed": {
      "Type": "Fail",
      "Cause": "LandingToArchiveFileTransfer invocation failed"
    },
    "LandingToArchiveFileTransferStatusPassed": {
      "Type": "Pass",
      "ResultPath": "$",
      "Parameters": {
        "year.$": "$.year",
        "month.$": "$.month",
        "day.$": "$.day"
      },
      "End": true
    }
  }
}

After updating the AWS StepFunctions definition, the visual workflow looks like the following.

Now upload file in data/landing/ zone in the bucket  where the trigger has been configured with the Lambda. The execution of StepFunction has started and the visual workflow looks like the following.

In RawCrawlerStatus step, if the Lambda is failing we retry till sometime and then mark the StepFunction as failed. If the StepFunction ran successfully. The visual workflow of the StepFunction looks like following.

Machine Learning workflow using Amazon SageMaker

The final step in this data pipeline is to make the processed data available in a Jupyter notebook instance of the Amazon SageMaker. Jupyter notebooks are popularly used among data scientists to do exploratory data analysis, build and train machine learning models.

Create Notebook Instance in Amazon SageMaker

Step1: In the Amazon SageMaker console choose Create notebook instance.

Step2: In the Notebook Instance settings populate the Notebook instance name, choose an instance type depends on data size, and a role for the notebook instances in Amazon SageMaker to interact with Amazon S3. The SageMaker execution role needs to have the required permission to Athena, the S3 buckets where the data resides, and KMS if encrypted.

Step3: Wait for the Notebook instances to be created and the Status to change to InService.

Step4: Choose the Open Jupyter, which will open the notebook interface in a new browser tab.

Click new to create a new notebook in Jupyter. Amazon SageMaker provides several kernels for Jupyter including support for Python 2 and 3, MXNet, TensorFlow, and PySpark. Choose Python as the kernel for this exercise as it comes with the Pandas library built in.

Step5: Within the notebook, execute the following commands to install the Athena JDBC driver. PyAthena is a Python DB API 2.0 (PEP 249) compliant client for the Amazon Athena JDBC driver.

import sys
!{sys.executable} -m pip install PyAthena

Step6: After the Athena driver is installed, you can use the JDBC connection to connect to Athena and populate the Pandas data frames. For data scientists, working with data is typically divided into multiple stages: munging and cleaning data, analyzing/ modeling it, then organizing the results of the analysis into a form suitable for plotting or tabular display. Pandas is the ideal tool for all of these tasks.

from pyathena import connect
import pandas as pd
conn = connect(s3_staging_dir='<ATHENA QUERY RESULTS LOCATION>',
               region_name='REGION, for example, us-east-1')

df = pd.read_sql("SELECT * FROM <DATABASE>.<TABLENAME> limit 10;", conn)
df

As shown above, the dataframe always stays consistent with the latest incoming data because of the data engineering pipeline setup earlier in the ML workflow. This dataframe can be used for downstream ad-hoc model building purposes or for exploratory data analysis.

That’s it folks. Thanks for the read.

This story is authored by PV Subbareddy. Subbareddy is a Big Data Engineer specializing on Cloud Big Data Services and Apache Spark Ecosystem.

Email Deliverability Analytics using SendGrid and AWS Big Data Services

Email Deliverability Analytics using SendGrid and AWS Big Data Services

In this post, we will run though a case study to setup an email deliverability analytics pipeline using SendGrid and AWS Big Data Services such as S3, Glue and Athena. To start off, when we send mails from SendGrid to recipients. we get responses (multiple response types are possible such as processed, delivered, blocked, deferred etc) from Email Service Providers such as gmail, yahoo etc. We could use this response data to improve our Email Deliverability by analyzing this email response data. This is achieved by logging these responses (via API Gateway and Lambda function) into Amazon S3 and then analyzing them using Athena. The chain of events is put in place by using a web hook that triggers a post request to AWS API Gateway on an event notification (response) from SendGrid. The API Gateway is further configured to trigger a Lambda Function which writes the email response data into S3. We then use Glue crawler to update the metadata in data catalogue, thereby making it available for Athena to perform SQL based analysis.

Without further ado, let’s set the ball rolling. Go to SendGrid and select Settings>Mail_Settings. Click on Event Notifications

We are gonna enable it by giving an Endpoint and select the Events for which you want to get a response. 

The above endpoint points to the AWS API Gateway (shown below) which is a POST request and it triggers the Lambda function as you can see.

Now our Lambda function stores the event payload data in S3 Bucket
Lambda code:

const AWS = require('aws-sdk')
    var s3Bucket = new AWS.S3( { params: {Bucket: "Your-Bucket"} } );
    
    exports.handler = (event, context, callback) => {
        console.log(event); // the response data
        let x = "";
        event.map((item)=>{
            x = x + JSON.stringify(item) + "\n"
        }) 
        let uuid = create_UUID();
        var filePath = "receivelogs/"+uuid;
        console.log(filePath);
        var data = {
            Key: filePath, 
            Body: x
        };
        s3Bucket.putObject(data, function(err, data){
            if (err) { 
                console.log('Error uploading data: ', data);
                callback(err, null);
            } else {
                console.log('Successfully uploaded the response');
                callback(null, data);
            }
        });
};
// this function will generate Unique User ID. Used as FileName
function create_UUID(){
   var dt = new Date().getTime();
   var uuid = 'xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx'.replace(/[xy]/g, function(c) {
       var r = (dt + Math.random()*16)%16 | 0;
       dt = Math.floor(dt/16);
       return (c=='x' ? r :(r&0x3|0x8)).toString(16);
   });
   return uuid;
}

When you send mail, the response is triggered from SendGrid via POST request to API Gateway and then the response gets stored in S3 via Lambda function.

AWS Glue is a fully managed ETL (extract, transform, and load) service that makes it simple and cost-effective to categorize your data, clean it, enrich it, and move it reliably between various data stores. We use a crawler to populate the AWS Glue Data Catalog with tables. Below is the step-by-step process to setup the Glue crawler to read an S3 based data source and make it available as a database table for AWS Athena based analytics.

In the step above, you may need to create a new IAM role that provides access to the underlying S3 data.

So in the steps above, we have concluded the setup for the crawler to fetch the underlying data on S3.

When you run this crawler on the S3 based data source, it updates the metadata of objects in that path in Glue data catalogue. Now, Athena can query ( SQL operations) those objects in S3 using metadata available in data catalogue. A lot of business executives aren’t comfortable with SQL queries, perhaps an add-on to this data pipeline could be using AWS Quicksight for a more BI driven analysis.

Thanks for the read!

This story is authored by Santosh Kumar. He is an AWS Cloud Engineer.